metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

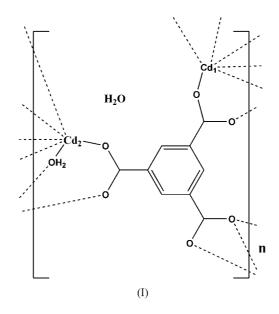
You-Fu Zhou,* Ben-Lai Wu, Lei Han and Mao-Chun Hong

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yfzhou@fjirsm.ac.cn

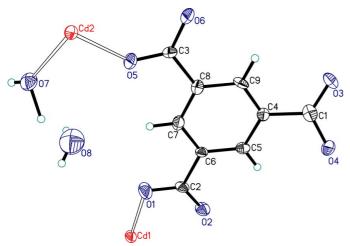
Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.013 Å R factor = 0.048 wR factor = 0.116 Data-to-parameter ratio = 10.5

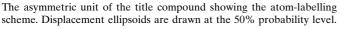

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

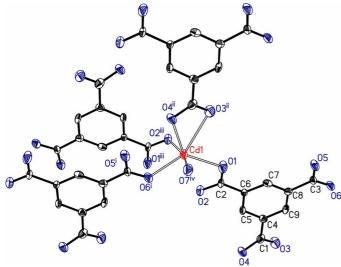
Poly[[diaqua(μ_6 -1,3,5-benzenetricarboxylato)-tricadmium(II)] dihydrate]

The title compound, {[$Cd_3(C_9H_3O_6)_2(H_2O)_2$]· $2H_2O_{n}$, consists of a three-dimensional channel-like network. The asymmetric unit contains two crystallographically independent Cd^{II} ions, one of which shows a distorted trigonal prismatic coordination provided by six O atoms from one bidentate and three monodentate carboxylate groups, and one water molecule. The second independent Cd^{II} ion, which lies on an inversion centre, displays a distorted octahedral coordination environment provided by six O atoms from four monodentate carboxylate groups and two water molecules.


Comment

The construction of supramolecular networks is currently of great interest owing to their intriguing network topologies and potential functions as new classes of materials (Kepert *et al.*, 2000; Lu *et al.*, 2001). 1,3,5-Benzenetricarboxylate (btc) has a rigid benzene ring and three symmetrically distributed carboxylate groups, which have potentially diverse coordination modes. Thus, btc is usually adopted as a good spacer to build cavitary networks (Yaghi *et al.*, 1996; Chui *et al.*, 1999; Dai *et al.*, 2002; Prior *et al.*, 2003). We report here the synthesis and crystal structure of a novel three-dimensional polymeric network, formulated as { $[Cd_3(btc)_2(H_2O)_2] \cdot 2H_2O_{ln}$, (I).




Single-crystal X-ray diffraction analysis reveals that (I) crystallizes in the space group $P\overline{1}$ and consists of a threedimensional channel-like network. The asymmetric unit contains Cd^{II} ions, btc ligands and water molecules in a 1.5:1:2 stoichiometric ratio (Fig. 1).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved sists Received 30 November 2004 etric Accepted 14 December 2004 Online 24 December 2004

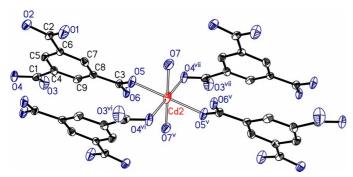

Figure 1

Figure 2

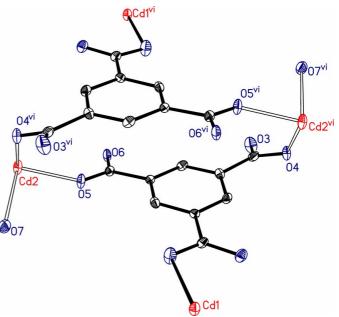

The coordination environment of the Cd1 ion. [Symmetry codes: (i) x, 1 + y, z - 1;(ii)x, y, z - 1;(iii)-x, 1 - y, -1 - z;(iv)1 - x, -y, -1 - z.]-1 - z.] H atoms have been omitted.

Figure 3

The coordination environment of the Cd2 ion. [Symmetry codes: (v) 1 - x, -1 - y, -z; (vi) 1 - x, -y, -z; (vii) x, y - 1, z.] H atoms have been omitted.

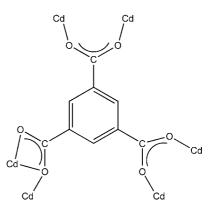

The Cd1 ion is coordinated by six O atoms from one bidentate and three monodentate carboxylate groups of btc ligands [Cd1-O = 2.193 (7)-2.628 (7) Å] and one water

Figure 4 Perspective view of the dinuclear 16-membered ring. [Symmetry code: (vi) 1 - x, -y, -z.] H atoms have been omitted.

molecule [Cd1-O7 = 2.548 (8) Å], furnishing a trigonal prismatic geometry (Fig. 2). The Cd2 ion, an inversion centre, is coordinated by six O atoms from four monodentate btc carboxylate groups [Cd2-O = 2.159 (6)-2.311 (7) Å] and two water molecules [Cd2-O7 = 2.470 (8) Å] providing a distorted octahedral geometry (Fig. 3).

The btc ligand adopts a bidentate-bidentate-tridentate coordination mode (see scheme below). Two symmetry-related Cd2 ions are linked by two btc ligands through atoms O4 and O5 from carboxylate groups to form a 16-membered dinuclear ring as building unit $[Cd2\cdots Cd2^{vi} = 9.529 (2) \text{ Å};$ symmetry code: (vi) 1 - x, -y, -z], as shown in Fig. 4. The rings are further extended through the Cd^{II} ions and O atoms to form a three-dimensional channel-like network.

It is interesting that the three-dimensional network contains different channels along different directions. When viewed down the a axis, the three-dimensional network shows ellip-

soidal channels $(7.52 \times 7.88 \text{ Å}^2)$ (Fig. 5). The separation between the coordinated and the uncoordinated water O atoms is short $[O7 \cdots O8 = 2.628 (7) \text{ Å}]$, indicating the existence of hydrogen bonds, which anchor the uncoordinated water molecules lying at the centre of the channels. However, the network displays rectangular channels $(3.41 \times 9.53 \text{ Å}^2)$ when viewed down the *c* axis (Fig. 6). Uncoordinated water molecules are close to the inner backbone of the channels.

Experimental

The hydrothermal reaction of Cd(NO₃)₂·4H₂O (92 mg, 0.30 mmol), H₃btc (42 mg, 0.20 mmol) and water (10 ml) was carried out at 433 K for 3 d. After cooling to room temperature at a rate of 5 K h⁻¹, crystals of the title compound were collected by filtration and washed with distilled water (yield 41%, based on Cd). IR (KBr, ν cm⁻¹): 3392, 1618, 1562, 1439, 1369, 1109, 760, 731; Elemental analysis calculated for C₁₈H₁₄Cd₃O₁₆: C 26.25, H 1.71%; found: C 26.11, H 1.45%.

Z = 1

 $D_x = 2.554 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 1498

1898 independent reflections 1510 reflections with $I > 2\sigma(I)$

reflections $\theta = 2.3-25.0^{\circ}$ $\mu = 3.04 \text{ mm}^{-1}$ T = 273 (2) KPlate, colorless $0.22 \times 0.14 \times 0.06 \text{ mm}$

 $\begin{array}{l} R_{\mathrm{int}}=0.028\\ \theta_{\mathrm{max}}=25.0^\circ\\ h=-5\rightarrow7\\ k=-8\rightarrow11\\ l=-11\rightarrow11 \end{array}$

Crystal data

$\begin{split} & [\mathrm{Cd}_3(\mathrm{C_9H_3O_6})_2(\mathrm{H_2O})_2]\cdot 2\mathrm{H_2O} \\ & M_r = 823.50 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 6.5573 \ (10) \ \mathring{\mathrm{A}} \\ & b = 9.5294 \ (14) \ \mathring{\mathrm{A}} \\ & c = 9.8799 \ (15) \ \mathring{\mathrm{A}} \\ & \alpha = 62.979 \ (2)^{\circ} \\ & \beta = 79.162 \ (2)^{\circ} \\ & \gamma = 78.385 \ (1)^{\circ} \\ & V = 535.40 \ (14) \ \mathring{\mathrm{A}}^3 \end{split}$
Data collection
Bruker SMART CCD diffractometer
ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.616, T_{max} = 0.830$ 2767 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.048$	+ 7.0083P]
$wR(F^2) = 0.116$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
1898 reflections	$\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

Cd1-O1	2.193 (7)	Cd2-O5 ^v	2.159 (6)
Cd1-O6 ⁱ	2.212 (6)	Cd2-O5	2.159 (6)
Cd1-O4 ⁱⁱ	2.273 (6)	Cd2-O4 ^{vi}	2.311 (7)
Cd1-O2 ⁱⁱⁱ	2.330 (7)	Cd2-O4 ^{vii}	2.311 (7)
Cd1-O7 ^{iv}	2.548 (7)	Cd2-07	2.475 (7)
Cd1-O3 ⁱⁱ	2.629 (7)	$Cd2-O7^{v}$	2.475 (7)
O6 ⁱ -Cd1-O2 ⁱⁱⁱ	86.7 (2)	O4 ^{vi} -Cd2-O7	76.0 (2)
$O1-Cd1-O7^{iv}$	89.5 (3)	O4 ^{vii} -Cd2-O7	104.0 (2)
$O6^{i}-Cd1-O7^{iv}$	80.8 (2)	$O5^{v}-Cd2-O7^{v}$	89.0 (2)
O4 ⁱⁱ -Cd1-O3 ⁱⁱ	52.4 (2)	$O5-Cd2-O7^{v}$	91.0 (2)

Symmetry codes: (i) x, 1+y, z-1; (ii) x, y, z-1; (iii) -x, 1-y, -1-z; (iv) 1-x, -y, -1-z; (v) 1-x, -1-y, -z; (vi) 1-x, -y, -z; (vii) x, y-1, z.

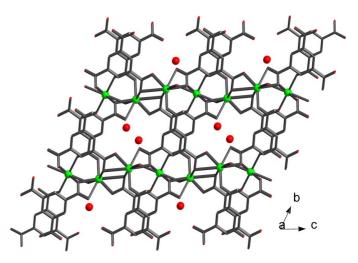


Figure 5

View of the three-dimensional network down the a axis. H atoms have been omitted.

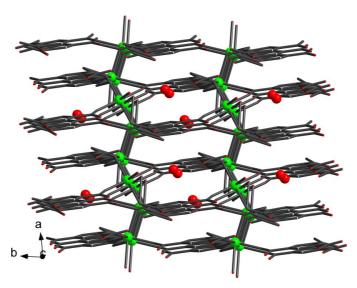


Figure 6

View of the three-dimensional network down the c axis. H atoms have been omitted.

Table 2	
Hydrogen-bonding geometry (Å, °)).

$D - H \cdots A$	D-H	Н∙∙∙А	$D \cdots A$	$D - H \cdots A$
O7−H7 <i>C</i> ···O8	0.93 (5)	1.77 (7)	2.628 (12)	151 (10)

Water H atoms were located in a difference Fourier map and refined with isotropic displacement parameters. Other H atoms were introduced in idealized positions (C–H = 0.93 Å) and refined as riding, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm H})$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART* and *SAINT* (Siemens, 1994); data reduction: *XPREP* in *SHELXTL* (Siemens, 1994); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXL*97 (Sheldrick, 1997).

This work was supported by grants of the National Natural Science Foundation of China, Chinese Academy of Sciences and the Young Scientist Foundation of Fujian Province.

References

- Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, L. D. (1999). *Science*, **283**, 1148–1150.
- Dai, J. C., Wu, X. T., Fu, Z. Y., Hu, S. M., Du, W. X., Cui, C. P., Wu, L. M., Zhang, H. H. & Sun, R. Q. (2002). *Chem. Commun.* pp. 12–13.

- Kepert, C. J., Prior, T. J. & Rosseinsky, M. J. (2000). J. Am. Chem. Soc. 122, 5158–5168.
- Lu, J., Mondal, A., Moulton, B. & Zaworotko, M. J. (2001). Angew. Chem. Int. Ed. 40, 2113–2116.
- Prior, T. J., Bradshaw, D., Teat, S. J. & Rosseinsky, M. J. (2003). Chem. Commun. pp. 500–501.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). SAINT and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yaghi, O. M., Li, H. & Groy, T. L. (1996). J. Am. Chem. Soc. 118, 9096-9101.